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Abstract

Purpose – The purpose of this paper is to numerically study transient natural convective flow in a
square cavity with partially heated and cooled vertical walls, thermally insulated top wall and
linearly heated bottom wall.
Design/methodology/approach – The governing equations of motion are non-dimensionalized
and reformulated using stream function-vorticity approach. Alternating direction implicit finite
difference scheme is used to solve the coupled equations.
Findings – The transient results obtained for different values of Grashof number (Gr) and fixed
Prandtl number Pr ¼ 0.733 are presented in the form of isotherms, streamlines, bifurcation diagram
and time series. The transition from steady to oscillatory motions is analyzed in detail with respect
to Gr. The flow is observed to be steady up to Gr � 2 � 104. A time-periodic unsteady solution first
appears at Gr ¼ 20,900 and the amplitude of the fluctuation grows as Gr is increased.
Research limitations/implications – The study is limited to laminar flow in a square cavity.
Further extension of this work could include the influence of various choices of Prandtl number and
the effect of aspect ratio. Buoyancy-driven convection in a sealed cavity with differentially heated
walls is a prototype of many industrial applications such as energy-efficient design of buildings and
rooms, convective heat transfer associated with boilers, etc.
Originality/value – The paper presents an original computer program written in FORTRAN to
solve the partial differential equations.
Keywords Convection, Vortices, Time series analysis, Laminar flow
Paper type Research paper
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Nomenclature

CP specific heat

Gr Grashof number

g acceleration due to gravity

l side of the enclosure

Nu Nusselt number

Nu average Nusselt number

p0 pressure

Pr Prandtl number

t time

u velocity along x direction

v velocity along y direction

Dimensionless variables

P fluid pressure

T temperature

U velocity along X direction

V velocity along Ydirection

X distance along x-coordinate
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Y distance along y-coordinate

Greek symbols

� volume expansion coefficient

�0 initial temperature

�h temperature along the hot wall

�c temperature along the cold wall

� dimensionless vorticity

� viscosity

� kinematic viscosity

� density

� dimensionless time

 stream function

1. Introduction
The convective motion driven by the buoyancy forces is a well-known natural
phenomenon and has attracted interest of many researchers. In particular, the topic of
natural convection in cavities has received much attention in the past since many
practical heat transfer situations can be modeled as flows in cavities.

There have been numerous investigations of natural convective heat transfer
that occurs in an enclosure (Sathiyamoorthy et al., 2007; Marcello and Milanez, 1995;
Wright et al., 2005; Wu et al., 2005; Yang, 1988; Newell and Schmidt, 1970; Valencia
and Fredrick, 1989; Kandaswamy and Nithyadevi, 2007). Sathiyamoorthy et al. (2007)
presented the numerical study of steady natural convection in a closed square cavity
under different boundary conditions. They analyzed the influence of heated vertical
walls on the flow and heat transfer characteristics when the bottom wall was
uniformly and non-uniformly heated and top wall was thermally insulated. They
showed that for small Rayleigh numbers (Ra), the average Nusselt number was almost
constant due to heat conduction and increased steadily as Ra increased.

Marcello and Milanez (1995) analyzed the steady natural convection in an enclosure
which was heated from below and symmetrically cooled from the sides. The results
discussed for wide range of parameters like Prandtl number (Pr), Rayleigh number (Ra)
and aspect ratio showed that on the Nusselt number, the influence of Pr was less
compared to other parameters. Wright et al. (2005) depicted the flow visualization of
natural convection in a tall, air-filled vertical cavity based on the experimental study
for the aspect ratio 40. The flow was found to be stable for Ra < 104 and irregular for
higher Ra. Most of the temperature drop existed in boundary layers near the walls.

Wu et al. (2005) studied experimentally the effect of the top and bottom wall
temperatures on the heat transfer characteristics in an air-filled square cavity driven by
difference in the vertical wall temperatures. They observed that changes in the top and
bottom wall temperatures changed the temperature gradient and the average temperature
of the air outside the thermal boundary layers in the cavity. Yang (1988) reviewed the
experimental and numerical studies of flow instability, bifurcation and transition to
turbulence for buoyant flow in three-dimensional rectangular enclosures heated from
below and from the sides, with emphasis on the routes to chaotic motion in detail.

Newell and Schmidt (1970) presented the time dependent two-dimensional natural
convection of air in a long horizontal enclosure with isothermal walls kept at different
temperatures using Crank and Nicholson method. The same problem was discussed by
Valencia and Fredrick (1989) with half active and half insulated vertical walls.

Kandaswamy and Nithyadevi (2007) numerically analyzed the buoyancy-driven
convection of water near its density maximum with partially active vertical walls in a
square cavity. They observed that the average Nusselt number behaved nonlinearly as
a function of Gr and the heat transfer rate decreased in the density maximum regions.
Basak et al. (2006) studied the steady effect of continuous and discontinuous Dirichlet
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boundary conditions on the flow and heat transfer characteristics due to natural
convection within a square enclosure. They reported that non-uniform heating of the
bottom wall produced greater heat transfer rates at the center of the bottom wall than
the uniform heating case for all Ra.

From the above-mentioned studies, it could be observed that the buoyancy-induced
flows in cavities with differentially heated bottom, top or side walls, display a circular
motion inside the cavity. Near the heated vertical surface, the fluid has a tendency to
rise and the cooler fluid shows a tendency to flow in the opposite direction. When
the two vertical walls of a cavity are differentially heated with top and bottom walls
adiabatic, due to the temperature difference, fluid flow occurs inside the enclosure.
Also, when the temperature difference quotient is horizontal and perpendicular to the
gravity vector, direction of the circulation is observed to depend on their orientation. In
cavities with either the top or bottom surface heated, the formation of counter rotating
cells has been noted. From the literature survey it is inferred that walls of the
enclosures are either heated or cooled uniformly in the vertical direction. Very less
attention has been given to the unsteady natural convection with simultaneous partial
heating and cooling of vertical walls.

In the present study, thus, an unsteady natural convection problem in a square
enclosure with partially heated and cooled vertical walls is being analyzed numerically.
It is assumed that the heated and cooled surface elements face each other in an opposed
manner. The bottom wall is assumed to be linearly heated and the top wall is thermally
insulated.

Mathematical formulation of the problem is presented and the equations of mass,
momentum and energy for the flow inside a square cavity are detailed. The governing
equations are transformed to non-dimensional form and solved by finite-difference
method. To support the current numerical calculations corroborative evidence is
provided in the results and discussion section. Emphasis has been placed on the
influence of the dimensionless Grashof number on the flow field variables and
heat transfer coefficient. Numerical predictions of flow streamlines, isothermals are
obtained for a wide range of Gr varying from 100 to 30,000 for a fixed Pr ¼ 0.733.

2. Mathematical formulation
A square cavity of length, l filled with fluid (air) as shown in Figure 1 is considered
in the present study. The fluid is assumed to be initially motionless and at a uniform
temperature �0, which is equal to the average of the temperatures at the vertical walls.

Upper and lower half portions of the left vertical wall are assumed to be maintained at
hot and cold temperatures, say, �h and �c, respectively, with �h > �c. The top wall is
assumed to be thermally insulated and the bottom wall is maintained at a temperature
� ¼ �c þ ð�h � �cÞ y=‘. Temperature along the cold and hot portions on the right vertical
wall are �c and �h, respectively. It is assumed that the effect of viscous dissipation is
negligible in the energy equation. Under these assumptions, the equations of mass,
momentum and energy with Boussinesq’s approximation are as follows:

@u

@x
þ @v

@y
¼ 0 ð1Þ

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ �g�ð�� �0Þ �

1

�

@p0

@x
þ � @2u

@x2
þ @

2u
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� �
ð2Þ
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@y
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�
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þ � @2v

@x2
þ @

2v
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@�

@t
þ u

@�

@x
þ v

@�

@y
¼ K

�CP

@2�

@x2
þ @

2�

@y2

� �
ð4Þ

The initial and boundary conditions are given by:

t ¼ 0: 0 � x � l; 0 � y � l; u ¼ v ¼ 0; � ¼ �0

t > 0: x ¼ 0; u ¼ v ¼ 0;
@�

@x
¼ 0

x ¼ l; u ¼ v ¼ 0; � ¼ �c þ ð�h � �cÞy=l

y ¼ 0; u ¼ v ¼ 0; � ¼
�h 0 � x � l=2

�c l=2 < x � l

�

y ¼ l; u ¼ v ¼ 0; � ¼
�c 0 � x � l=2

�h l=2 < x � l

�
ð5Þ

By introducing the following dimensionless variables:

X ¼ x

l
;Y ¼ y

l
;U ¼ ul

	
;V ¼ vl

	
;P ¼ p;l2

�	2
;T ¼ �� �0

�h � �0
; � ¼ t	

l2

Gr ¼ g�ð�h � �cÞl3
�2

;Pr ¼ �cp

k

ð6Þ

in the above equations (1)-(4), they are restated in the following dimensionless form as:

@U

@X
þ @V

@Y
¼ 0 ð7Þ

Figure 1.
Schematic of the

square cavity
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ð8Þ
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@V

@X
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@V

@Y
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@Y
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2V
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þ @
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@T
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@T

@X
þ V

@T

@Y
¼ 1

Pr

@2T

@X2
þ @

2T

@Y 2

� �
ð10Þ

with the initial and boundary conditions (5) in the dimensionless form as:

� ¼ 0: 0 � X � 1; 0 � Y � 1;U ¼ V ¼ 0;T ¼ 0

� > 0: X ¼ 0; U ¼ V ¼ 0;
@T

@X
¼ 0

X ¼ 1; U ¼ V ¼ 0; T ¼ 2Y � 1

Y ¼ 0; U ¼ V ¼ 0; T ¼
1 0 � X � 0:5

�1 0:5 < X � 1

�

Y ¼ 1; U ¼ V ¼ 0; T ¼
�1 0 � X � 0:5

1 0:5 < X � 1

�

ð11Þ

By introducing dimensionless vorticity & ¼ �r2 in equations (7)-(9) the problem
statement can be written as:

@&

@�
þ U

@&

@X
þ V

@&

@Y
¼ Gr

2

@T

@y
þr2& ð12Þ

@T

@�
þ U

@T

@X
þ V

@T

@Y
¼ 1

Pr
r2T ð13Þ

where the dimensionless stream function  is given by:

U ¼ @ 

@Y
and V ¼ � @ 

@X
ð14Þ

The corresponding boundary conditions are:

� ¼ 0: 0 � X � 1; 0 � Y � 1; & ¼ 0;T ¼ 0

� > 0: X ¼ 0;  ¼ @ 

@X
¼ 0;

@T

@X
¼ 0

X ¼ 1;  ¼ @ 

@X
¼ 0; T ¼ 2Y � 1

Y ¼ 0;  ¼ @ 

@Y
¼ 0; T ¼

1 0 � X � 0:5

�1 0:5 < X � 1

�

Y ¼ 1;  ¼ @ 

@Y
¼ 0; T ¼

�1 0 � X � 0:5

1 0:5 < X � 1

�
ð15Þ
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After obtaining the values of T, the local Nusselt number, Nu, ð¼ ð@T=@YÞY¼0Þ
and its mean value, Nu, over the height of the enclosure are calculated based on Gr, Pr,
l and � .

3. Method of solution
The system of unsteady coupled nonlinear partial differential equations (12) and (13)
is solved by finite-difference technique as explained below. If a solution for � and T
fields are found at � ¼ n�� (where n ¼ 0 corresponds to the initial condition) then the
solution at the next time level ð� ¼ ðnþ 1Þ��Þ is calculated by employing alternate
direction implicit (ADI) method. The vorticity and energy equations (12) and (13)
are transferred into a tridiagonal system of equations which is solved by Thomas
algorithm. An added advantage of using ADI method is that larger time increments
can be incorporated in solving the system of equations without loss of stability. It is
also shown (elsewhere) that this method is stable for any ratio of time increments to
space increments as long as the same time increment is kept at all levels.

After calculating the temperature and interior vorticity at an advanced point of time,
the stream function is then calculated by using the successive over relaxation method.
Velocity components and boundary vorticity are obtained from these values of stream
function. The vorticity values at the corners are taken as averages of the values of
vorticity at the two neighboring nodes. This sequence beginning with the ADI solution
of the energy equation is applied repeatedly until the desired results are acquired. The
convergence criteria used for the field variables 
 ¼ ðT; &;  Þ is given by:


nþ1ði; jÞ � 
nði; jÞ

nþ1ði; jÞ

� 10�5;

where the index n represents the iteration number. Time increment of 0.001 is taken in all
the calculations.

The numerical results presented in this paper are estimated from a 41 � 41
grid system. Figure 2 shows Nu values obtained for different grid systems, namely,
21 � 21 to 81 � 81. From this figure it can be observed that after 41 � 41 grid system,
there is not considerable change in the values of Nu; when the grid size is increased
further. Therefore, the 41 � 41 grid is used in the present study.

Prior to the computational calculations, as a partial verification of the
computational procedure, the Nu and  m (stream function at the cavity mid point)
results for different Ra and Pr were compared with the steady-state solutions given by
Wilkes and Churchill (1966) and De Vahl Davis (1968). Wilkes and Churchill (1966) and

Figure 2.
Effect of grid system

size on Nu at Gr ¼ 20,000
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De Vahl Davis (1968) considered a square enclosure with one vertical wall heated and
the other cooled along with linear and insulated boundary conditions on the horizontal
walls. The results are tabulated in Tables I and II for comparison.

4. Results and discussion
The flow structure usually depends on the geometrical parameters (X and Y) and
the control parameters Gr and Pr. In the present work, the effect of Gr is studied by
keeping the geometrical parameters and the control parameter Pr ¼ 0.733 (air) fixed.
The computations were started at Gr ¼ 100. At this low Gr, the simulated flow field
was observed to be steady and laminar. When Gr was increased, the flow was observed
to transit from one equilibrium state to another due to the presence of rapidly varying
disturbance field. The flow remained steady until Gr < 20,900. At slightly increasing
Grashof number to Gr ¼ 20,900, the flow, however, started to exhibit a time-periodic
solution.

Figure 3 shows the velocity U at an arbitrarily chosen location (0.75, 0.75) inside the
cavity for Gr ranging from 5,000 to 30,000. The velocity U is observed to be steady for
values of Gr up to 20,900. When Gr > 20,900, the bifurcation diagram depicted in this
figure shows the existence of two solutions for the stream wise velocity component U.
The computational results signify that for Gr < 20,900, the flow remains steady
and laminar and further increase in the Gr values leads to time periodic solution. The
transitional flow leading to oscillatory flow occurs at Gr ¼ 20,900.

Figure 4 illustrates the simulated streamlines and isotherms at Gr ¼ 100. From
Figure 4(b) it can be seen that the flow field in the cavity is characterized by the
presence of two counter-rotating cells, with the cell near the top left corner of the cavity
rotating clockwise and the cell near the bottom right corner rotating counter-clockwise.
Fluid in contact with the heated side of the cavity shows a tendency to rise due to the
decrease in fluid density and starts to move towards the cooled portion of the cavity.
The temperature difference in the cavity along both horizontal and vertical directions
leads to the formation of the counter rotating cells. In Figure 4(a), the simulated
isotherms of the flow field clearly show that the energy transport in the cavity is

Table II.
Comparison of average
Nusselt number

Boundary condition Gr Pr
Nu

Wilkes and Churchill (1966) Present study

Linear 6,850 0.733 1.419 1.624
Linear 20,000 0.733 2.068 2.280
Insulated 20,000 0.733 2.874 2.612

Table I.
Comparison of average
Nusselt number and
stream function values
at the cavity midpoint

Ra Pr Parameter De Vahl Davis (1968) Present study

10,000 0.733 Nu 1.773 1.704
 m 6.429 6.214

10,000 10.0 Nu 1.769 1.74
100 0.733  m 0.1582 0.12
1,000 0.733  m 1.54163 1.5

Note:  m – Stream function at the cavity mid point
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governed primarily by conduction. Also, the steady-state stream function values
 max ¼ 0:022 and  min ¼ �0:014 obtained at Gr ¼ 100 indicate the prevalence of
conduction. Major portion of the cavity is occupied by the slow moving fluid.

Figure 5 illustrates the simulated steady-state isotherm contours and stream lines
obtained at different values of Gr. A significant change in the isotherm pattern is seen
at Gr ¼ 20,500 compared to Gr ¼ 10,000. The isotherms show a gradual departure
from the conduction dominated pattern shown in Figure 4(a) and are observed to be
more concentrated near the vertical walls. A more uniform temperature distribution is
seen at the center of the cavity. Fluid along the hot portion of the walls gets heated up
and move towards the cooler portion to form two counter rotating cells. Values of the
stream function increases as Gr increases, shows the acceleration of the fluid.

To study the effect of Gr on the temperature T and velocity U, simulations of the flow
were performed at Gr ¼ 5,000, 10,000, 20,000, 30,000 and 40,000. Figure 6 shows the
effect of Gr on the temperature T with respect to Y at X ¼ 0.5. The temperature is steady
and rises very rapidly near the walls compared to other locations irrespective of Gr.
Figure 7 exhibits the unsteady behavior of T at Gr ¼ 21,000. Time evolution of
temperature at three different locations (0.75, 0.75), (0.5, 0.5) and (0.25, 0.75) inside the
cavity are shown. The inset figure clearly illustrates the oscillations in the temperature.
It can be observed that oscillation of T at the center of the cavity (0.5, 0.5) is less
compared to other locations. Temperature calculations at all these three different locations
show thermal instability.

Mid height velocity U (0.5, Y ) profiles at different Gr are shown in Figure 8. At
Gr ¼ 5,000, heat transfer is mainly by conduction and hence very minimum changes
occurred in U values. When Gr increases further, convective effects become stronger
to cause steep increase in U values. Velocity U is found to reach maximum near the
center of the cavity. Figure 9 shows time evolution of U at three different locations (0.5,
0.5), (0.75, 0.25) and (0.25, 0.75) at Gr ¼ 21,000. The inset figure clearly exhibits the

Figure 3.
The bifurcation diagram
at the arbitrarily chosen

location (0.75, 0.75)
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unsteady behavior of U. At (0.5, 0.5) though velocity is maximum, oscillations are
observed to be minimum compared to other two locations. Velocity estimation at these
three locations exhibits unstable nature.

Figure 10 shows the unsteady behavior of average Nusselt number at Gr ¼ 21,000.
The inset figure shows the oscillations of Nu. The unsteady nature of Nu is due to the
increasing oscillations in the temperature values.

Figure 11 shows the stream function and isotherm contours at t ¼ 9.0000 and
t ¼ 9.0004 when Gr ¼ 30,000. A significant change in the isotherm pattern is
observed in Figures 11(a) and (b). Distinctly different pattern of counter rotating cells is
seen in Figures 11(c) and (d).

Figure 4.
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At t ¼ 9.0, a clockwise rotating cell develops and occupies the major portion of the
cavity and a small counter clockwise rotating cell is seen near the bottom right corner.
At t ¼ 9.004, this counter clockwise rotating cell grows in size and suppresses the
clockwise rotating cell. Significant part of the cavity has fluid with large temperature
gradients which results in visibly dominant rotating cell. More oscillations seen in the
velocity values, when Gr is increased further, finally leads to unsteady behavior.

Amplitude of the fluctuations in the computed quantities grows as Gr increases
further is shown in temperature T and velocity U values (see Figures 12 and 13) at the
arbitrarily selected location (0.5, 0.5) inside the cavity at Gr ¼ 100,000. Time periodic
behavior is observed.

Figure 5.
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5. Conclusion
Numerical predictions of unsteady natural convection flow in a square cavity with
partially heated and cooled vertical walls, adiabatic top wall and linearly heated bottom
wall have been presented. The non-dimensional governing equations were solved
numerically by the ADI finite difference method. From the simulations of the flow
performed over the range of Grashof number from 100 to 30,000, the flow pattern was

Figure 6.
Mid-height temperature
profiles at different
Gr values

Figure 7.
Temperature T at three
different locations at
Gr ¼ 21,000
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found to depend on the Gr value. At low values of Gr, energy transport in the cavity was
mainly by conduction. Flow pattern changes occurring with increasing Gr were
analyzed with the aid of streamlines, isotherms and average Nusselt number. On
increasing Gr, stream function values increased considerably due to the change in heat
transfer mode from conduction to convection. The flow was found to be steady and
laminar for Gr < 20,900 and oscillatory for Gr > 20,900. Oscillations in the temperature,

Figure 8.
Velocity U at (0.5, Y) at

different Gr

Figure 9.
Velocity U at three

different locations when
Gr ¼ 21,000
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Figure 10.
Average Nusselt number
vs time at Gr ¼ 21,000

Figure 11.
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velocity and average Nusselt number were calculated at Gr ¼ 21,000 and Gr ¼ 30,000.
The amplitude of the fluctuations in T, U and Nu were found to increase considerably on
increasing Gr. Signs of change, in the flow pattern, began at Gr ¼ 20,900 and on further
increasing Gr the flow became unsteady. The analysis of the results revealed that the
flow field was appreciably influenced by the Grashof number.

Figure 12.
Temperature T at the

location (0.5, 0.5) inside
the cavity at

Gr ¼ 100,000

Figure 13.
Velocity U at the location
(0.5, 0.5) inside the cavity

at Gr ¼ 100,000
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